1,077 research outputs found

    ์ˆ˜ํ™•์‹œ๊ธฐ์™€ ์ œ์กฐ๋ฐฉ๋ฒ•์ด ํ˜ธ๋ฐ€์˜ ํ’ˆ์งˆ๊ณผ ๋ฒ ํƒ€์นด๋กœํ‹ด ํ•จ๋Ÿ‰์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ตญ์ œ๋†์—…๊ธฐ์ˆ ๋Œ€ํ•™์› ๊ตญ์ œ๋†์—…๊ธฐ์ˆ ํ•™๊ณผ,2019. 8. ๊น€์ข…๊ทผ.Limited information are available about how forage quality and ฮฒ-carotene content are affected by various factors on rye in Pyeongchang, Korea. So this experiment was conducted to investigate the effect of harvest dates and different preservation methods on forage quality and ฮฒ-carotene content. Samples were collected from rye harvested every 5 days, from April 25 to May 31, and also comparisons were done about rye silage wilted for different periods and hay of 3 three stages. As for effect of harvest dates, advancing maturity increased dry matter (DM) content, plant height, DM yield and total digestible nutrients (TDN) yield, but decreased the crude protein (CP), in vitro dry matter digestibility (IVDMD) and relative feed value (RFV) significantly (P < 0.05). With plant matured, all the 3 parts (leaf, stem and grain) showed decreases of forage quality and the part with lowest quality was stem. ฮฒ-carotene also decreased by advancing maturity. So for getting higher yield and quality, harvest around blooming stage is proper. For silage, with advancing maturity, DM content, acid detergent fiber (ADF) and neutral detergent fiber (NDF) content increased while CP, IVDMD, TDN, RFV and DM loss decreased (P < 0.0001). And wilting raised the DM content and pH value significantly (P < 0.0001). Silage harvested at heading stage showed the lowest pH value (4.45), propionic acid (PA) (0.83 g/kg DM), butyric acid (BA) (0 g/kg DM), fungi and yeast (F&Y) population (3.70 log CFU / g of FM), conversely, the highest lactic acid (LA) (9.7 g/kg DM), lactic acid bacteria (LAB) (6.87 log CFU / g of FM), total microorganisms (TM) (7.33 log CFU / g of FM) and Fliegs score (70) (P < 0.0001). Wilting elevated LAB and TM population but had no regular effect on other fermented products. Both of delayed harvest and prolonged wilting decreased ฮฒ-carotene content. Above all, silage harvested around May 9 (heading) with 24 hours wilting was preferred for rye silage in Pyeongchang. For rye hay, advancing maturity decreased the DM loss, IVDMD, TDN and RFV, but increased the DM, ADF and NDF content significantly (P < 0.05). ฮฒ-carotene was decreased by delay of hay-making. Consequently, to get lower DM loss and higher hay quality, May 9 (heading) was recommended in Pyeongchang.ํ‰์ฐฝ ์ง€์—ญ์—์„œ ํ˜ธ๋ฐ€์ด ๋‹ค์–‘ํ•œ ์š”์ธ์— ์˜ํ•ด ์‚ฌ๋ฃŒ๊ฐ€์น˜์™€ ฮฒ-carotene ํ•จ๋Ÿ‰์ด ์–ด๋–ป๊ฒŒ ์˜ํ–ฅ์„ ๋ฐ›๋Š”์ง€์— ๋Œ€ํ•œ ์ •๋ณด๋Š” ๋งŽ์ง€ ์•Š๋‹ค. ๊ทธ๋ž˜์„œ ๋ณธ ์‹œํ—˜์€ ์ˆ˜ํ™•์‹œ๊ธฐ์™€ ์กฐ์ œ๋ฐฉ๋ฒ•์ด ํ˜ธ๋ฐ€์˜ ์‚ฌ๋ฃŒ๊ฐ€์น˜์™€ ฮฒ-carotene ํ•จ๋Ÿ‰์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๊ตฌ๋ช…ํ•˜๊ณ ์ž ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ํ˜ธ๋ฐ€ ์‹œ๋ฃŒ๋Š” 4์›” 25์ผ๋ถ€ํ„ฐ 5์›” 31์ผ๊นŒ์ง€ ๋งค 5์ผ๊ฐ„ ์ˆ˜ํ™•ํ•˜์—ฌ ์ˆ˜์ง‘ ๋˜์—ˆ์œผ๋ฉฐ ๊ฑด์ดˆ์™€ ์‚ฌ์ผ๋ฆฌ์ง€๋Š” 3๋ฒˆ์˜ ์ƒ์œก๋‹จ๊ณ„ (์ˆ˜์ž‰๊ธฐ, ์ถœ์ˆ˜๊ธฐ ๋ฐ ๊ฐœํ™”๊ธฐ) ์—์„œ ์ˆ˜ํ™•ํ•˜์˜€๊ณ , ์‚ฌ์ผ๋ฆฌ์ง€๋Š” ์˜ˆ๊ฑด ๊ธฐ๊ฐ„(๋ฌด์ฒ˜๋ฆฌ, 6์‹œ๊ฐ„ ๋ฐ 24์‹œ๊ฐ„) ์„ ๋‹ฌ๋ฆฌํ•˜์˜€๋‹ค. ์ˆ˜ํ™•์‹œ๊ธฐ์— ๋Œ€ํ•œ ํšจ๊ณผ์—์„œ ์ˆ™๊ธฐ๊ฐ€ ์ง„ํ–‰๋จ์— ๋”ฐ๋ผ ๊ฑด๋ฌผํ•จ๋Ÿ‰, ์ดˆ์žฅ, ๊ฑด๋ฌผ์ˆ˜๋Ÿ‰ ๋ฐ TDN ์ˆ˜๋Ÿ‰์€ ์ฆ๊ฐ€ํ•˜์˜€์œผ๋‚˜ ์กฐ๋‹จ๋ฐฑ์งˆ ํ•จ๋Ÿ‰, IVDMD์™€ RFV๋Š” ์œ ์˜์ ์œผ๋กœ ๊ฐ์†Œํ•˜์˜€๋‹ค. ํ˜ธ๋ฐ€์ด ์„ฑ์ˆ™ํ•จ์— ๋”ฐ๋ผ ๋ชจ๋“  ์‹๋ฌผ์ฒด๋ถ€์œ„ (์žŽ, ์ค„ ๋ฐ ๊ณก์‹ค) ์—์„œ ์‚ฌ๋ฃŒ๊ฐ€์น˜๊ฐ€ ๊ฐ์†Œํ•˜์˜€๊ณ  ์ค„๊ธฐ์˜ ์‚ฌ๋ฃŒ๊ฐ€์น˜๊ฐ€ ๊ฐ€์žฅ ๋‚ฎ์•˜๋‹ค. ฮฒ-carotene ํ•จ๋Ÿ‰์€ ํ˜ธ๋ฐ€์˜ ์ƒ์œก์ด ์ง„ํ–‰๋จ์— ๋”ฐ๋ผ ๊ฐ์†Œํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ๋” ๋†’์€ ์ˆ˜๋Ÿ‰๊ณผ ํ’ˆ์งˆ์„ ์œ„ํ•ด์„œ๋Š” ๊ฐœํ™”๊ธฐ ์ „ํ›„์— ์ˆ˜ํ™•ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€์žฅ ์ ์ ˆํ•˜์˜€๋‹ค. ์‚ฌ์ผ๋ฆฌ์ง€์— ์žˆ์–ด์„œ๋Š” ์ˆ™๊ธฐ๊ฐ€ ์ง„ํ–‰๋จ์— ๋”ฐ๋ผ ๊ฑด๋ฌผํ•จ๋Ÿ‰, ADF ๋ฐ NDFํ•จ๋Ÿ‰์€ ์ฆ๊ฐ€ํ•˜๋Š” ๋ฐ˜๋ฉด CP, IVDMD, TDN, RFV ๋ฐ ๊ฑด๋ฌผ ์†์‹ค์€ ์œ ์˜์ ์œผ๋กœ ๊ฐ์†Œํ•˜์˜€๋‹ค (P<0.0001). ์˜ˆ๊ฑด์€ ๊ฑด๋ฌผํ•จ๋Ÿ‰๊ณผ pH๊ฐ’์„ ์œ ์˜์ ์œผ๋กœ ์ฆ๊ฐ€์‹œ์ผฐ๋‹ค (P<0.0001). ์ถœ์ˆ˜๊ธฐ์— ์ˆ˜ํ™•๋œ ์‚ฌ์ผ๋ฆฌ์ง€์˜ pH (4.45), propionic acid (0.83 g/kg DM), butyric acid (BA) ํ•จ๋Ÿ‰ (0 g/kg DM), ๊ณฐํŒก์ด์™€ ์ด์ŠคํŠธ ์ˆ˜ (3.70 log CFU / g of FM) ๊ฐ€ ๊ฐ€์žฅ ๋‚ฎ์•˜์œผ๋ฉฐ, ๋ฐ˜๋Œ€๋กœ lactic acid (LA) (9.7 g/kg DM) ํ•จ๋Ÿ‰, lactic acid bacteria (LAB) ์ˆ˜ (6.87 log CFU / g of FM), ์ด ๋ฏธ์ƒ๋ฌผ์ˆ˜ (TM) (7.33 log CFU / g of FM) ๋ฐ Flieg ์ ์ˆ˜ (70) ๋Š” ๊ฐ€์žฅ ๋†’์•˜๋‹ค (P < 0.0001). ์˜ˆ๊ฑด์€ ์ –์‚ฐ๊ท ๊ณผ ์ด ๋ฏธ์ƒ๋ฌผ์ˆ˜๋ฅผ ์ฆ๊ฐ€์‹œ์ผฐ์œผ๋‚˜ ๋‹ค๋ฅธ ๋ฐœํšจ์‚ฐ๋ฌผ์—๋Š” ์ผ์ •ํ•œ ๊ฒฝํ–ฅ์„ ๋‚˜ํƒ€๋‚ด์ง€ ์•Š์•˜๋‹ค. ์ง„ํ–‰๋œ ์ˆ™๊ธฐ ๋ฐ ์˜ˆ๊ฑด์‹œ๊ฐ„์€ ฮฒ-carotene ํ•จ๋Ÿ‰์„ ๊ฐ์†Œ์‹œ์ผฐ๋‹ค. ์ด์ƒ์˜ ๊ฒฐ๊ณผ๋ฅผ ์ข…ํ•ฉํ•˜์—ฌ ๋ณผ ๋•Œ ํ‰์ฐฝ์ง€์—ญ์—์„œ์˜ ํ˜ธ๋ฐ€ ์‚ฌ์ผ๋ฆฌ์ง€๋Š” 5์›” 9์ผ (์ถœ์ˆ˜๊ธฐ) ๊ฒฝ์— ์ˆ˜ํ™•ํ•˜์—ฌ 24์‹œ๊ฐ„ ์˜ˆ๊ฑดํ•˜์—ฌ ์กฐ์ œํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€์žฅ ๋ฐ”๋žŒ์งํ•˜๋‹ค. ๊ฑด์ดˆ์— ์žˆ์–ด๋Š” ์ˆ˜ํ™•์ด ์ง€์—ฐ๋จ์— ๋”ฐ๋ผ ๊ฑด๋ฌผ์†์‹ค, IVDMD, TDN ๋ฐ RFV๊ฐ€ ๊ฐ์†Œํ•˜์˜€์œผ๋ฉฐ DM, ADF ๋ฐ NDF ํ•จ๋Ÿ‰์€ ์ฆ๊ฐ€๋˜์—ˆ๋‹ค (P<0.05). ฮฒ-carotene ํ•จ๋Ÿ‰์€ ๊ฑด์ดˆ ์กฐ์ œ๊ฐ€ ์ง€์—ฐ๋จ์— ๋”ฐ๋ผ ๊ฐ์†Œํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ, ๋‚ฎ์€ ๊ฑด๋ฌผ์†์‹ค๊ณผ ๊ณ ํ’ˆ์งˆ์˜ ๊ฑด์ดˆ๋ฅผ ์ƒ์‚ฐํ•˜๋ ค๋ฉด 5์›” 9์ผ (์ถœ์ˆ˜๊ธฐ) ์— ์ˆ˜ํ™•ํ•˜๋Š” ๊ฒƒ์ด ์ถ”์ฒœ๋˜์—ˆ๋‹ค.1. Introduction 1 1.1 Research background 1 1.2 Aim of research 3 2. Literature Review 4 2.1 Harvest stage 4 2.2 Different plant parts 5 2.3 Wilting conditions 6 2.4 Different preservation method 7 2.4.1 Ensiling 8 2.4.2 Haymaking 9 2.5 Storage 11 2.5.1 Silage storage 11 2.5.2 Hay storage 12 2.6 Microbial activity 12 2.6.1 Microbial activity during ensiling 12 2.6.2 Microbial activity during hay preservation 13 2.7 ฮฒ-carotene 13 3. Materials and Methods 15 3.1. General information 15 3.2. Materials preparation 17 3.2.1 Raw materials preparation 17 3.2.2 Silage preparation 17 3.2.3 Hay preparation 21 3.3 Chemical analysis 22 3.3.1 Pretreatment for chemical analysis 22 3.3.2 Detergent fiber analysis 22 3.3.3 Crude protein analysis 22 3.3.4 Calculation of TDN and RFV 23 3.4 In vitro digestibility analysis 23 3.5 Fermentation characteristics 25 3.5.1 Acidity (pH) 26 3.5.2 Organic acid 26 3.5.3 Microbial analysis 27 3.5.4 Ammonia nitrogen (NH3-N) 28 3.5.5 Water soluble carbohydrate (WSC) 28 3.6 Analysis of ฮฒ-carotene 29 3.7 Statistical analysis 30 4. Results and Discussions 31 4.1 Effect of harvest dates 30 4.1.1 Effect of harvest dates on agronomic characteristics 31 4.1.2 Effect of harvest dates on yield composition 32 4.1.3 Effect of harvest dates on forage quality of rye 34 4.1.4 Effect of harvest dates on ฮฒ-carotene content 37 4.2 Effect of plant parts 38 4.2.1 Effect of harvest dates on leaf-stem-grain ratio 38 4.2.2 Effect of plant parts and harvest dates on feed value of forage rye 39 4.3 Effect of ensiling dates and wilting periods on rye silage 42 4.3.1 Chemical composition and feed value 42 4.3.2 Fermentation characteristics 44 4.3.3 Organic acid composition 47 4.3.4 Viable count of microbes 50 4.3.5 ฮฒ-carotene concentration 52 4.4. Effect of hay-making processing 53 4.4.1 Temperature change during storage 53 4.4.2 Chemical composition and feed value 54 4.4.3 ฮฒ-carotene 57 5. Conclusion 59 6. Bibliography 61 7. Abstract in Korean 74Maste

    2-D Coherence Factor for Sidelobe and Ghost Suppressions in Radar Imaging

    Get PDF
    The coherence factor (CF) is defined as the ratio of coherent power to incoherent power received by the radar aperture. The incoherent power is computed by the multi-antenna receiver based on only the spatial variable. In this respect, it is a one-dimensional (1-D) CF, and thereby the image sidelobes in down-range cannot be effectively suppressed. We propose a two-dimensional (2-D) CF by supplementing the 1-D CF by an incoherent sum dealing with the frequency dimension. In essence, we employ both spatial diversity and frequency diversity which, respectively, enhance imaging quality in cross range and range. Simulations and experimental results are provided to demonstrate the performance advantages of the proposed approach.Comment: 7 pages, 21 figure

    Large-Scale Peptide Modification on BioBrick Proteins

    Get PDF
    With the established BioBrick Assembly standards, fusion proteins with diversified functions are easy to manipulate. However, we realized that the existing BBF RFC do not clearly defining the standard for peptide display on BioBrick proteins. Considering the promising use of specific small peptide modification on functional proteins, targeting to specific cell types, for example, we proposed a standard for small peptide modification on BioBrick proteins
    • โ€ฆ
    corecore